
© 8 vee An ORBIS Publicatio ..
AR ET Aus $195. NZ $2.25 SARIIS Sing $4.50 USARCan $195 YY

CONTINENTAL SHIFT The European
market for computers has boomed in the
past few years; we look at the task facing
software houses wishing to translate their
packages |

RESEARCH FELLOW The Link 480Z is
the second computer from Research
Machines aimed at the educational market.

POWER PACKS We review four
spreadsheet packages that are
representatives of a new breed of computer
software — packing more power into a
smaller memory space

STITCH IN TIME Our special projects
continue in LOGO as we show you how to
create cycloid curves and introduce the
principles of ‘curve stitching’

INTERRUPTS TO JUSTIFY A weekly
glossary of computing terms

GHOST APPEARANCE Now that the
adventurer has entered the tunnel we are
ready to write the procedures to create
random ghosts

Bele

ACTION STATIONS In this part of bal ‘
our detailed look at the BBC Micro’s 89 /
operating system we concentrate on the use
of vectors and learn how to interact with the
keyboard and the screen

WEIGHING IN We examine the
calculations required to calibrate the robot’s 894
movement-controlling software and write a
program to test its collision sensors

LOGO EXTRA In an extension of our LOGO _ INSIDE
Series, we continue with our investigation of BACK
its geometric powers COVER sm ng : ee

COVER PHOTOGRAPHY

In the early years of the computer industry,
English was the sole language used in
programming and documentation. Software
publishers are now beginning to realise the
benefits of adapting packages for use in
non-English speaking countries; here we
look at the pitfalls and rewards of the
translation process.

Until recently, nearly all software programs were
written in English. English was the standard
language of computing because of the domination
of the United States during the 1950s and 60s.

However, the introduction of the
microcomputer in the late 1970s and early 1980s
caused great problems in non-English speaking
countries. This proved to be a great obstacle to the
spread of microcomputing throughout
continental Europe and created a vicious circle.
Businesses would not invest in software they could
not readily understand and use, and software
houses would not spend the money necessary to
translate their programs into a country’s language
when proven sales were insufficient to meet
development costs. The result was that Britain,
with the enormous advantage of sharing a
common language with the United States, became

UNITED KINGDOM
510

SCANDINAVIA

wa pene veh BARA
ae
Sa on ane aoe ce

ARSE at cs

ae
ace UD

the most developed market in Europe for
microcomputers.

This situation is now beginning to change.
Software houses have realised the enormous
potential market in continental Europe and have
started translating their programs into the
languages of the countries in which they hope to
sell their products. Lotus Software, as one of the
biggest suppliers of IBM business programs, was
one of the first companies to produce foreign
language translation. pe

Lotus 1-2-3 (see page 644) and Symphony are
among the biggest sellers of the new generation of
‘integrated software’. These packages generally
incorporate a spreadsheet, database and some
word processing and graphics capabilities. Data
can be passed between each of these applications
— allowing, for example, information held in a
database to be manipulated on a spreadsheet,
which can then be incorporated into a document.

The translation of such a program from English
to, say, Italian may seem simple enough — any text
commands that appear on the screen must be
changed into the appropriate language. However,
several difficulties immediately arise. Firstly, if the
text is embedded in parts of the source code itself,
finding the text in 120 Kbytes of code in which
both text and program are represented purely as

THE HOME COMPUTER ADVANCED COURSE 881

EEC PC
Because the UK started with the
advantage of sharing acommon
language with the USA, British »
companies have so far
outstripped the continentals in
installing personal computers.
It seems, however, that the

dramatic UK sales growth is
ending just as the market in
other European countries is
taking off: it is estimated that,
by 1988, West Germany will
have overtaken the UK in the
total number of installed
machines

KEVIN JONES

ASCII 156

ASCIl International
To deal with the specific
character sets employed by
different languages Lotus has
developed LICS (the Lotus
International Character Set), in

which there is a code value for
each foreign character. Ona
French keyboard, for example,
pressing the é key (as in café)
might generate a code of 156;
this corresponds to 173 in LICS.
When this character is to be
sent to the screen LICS decodes
it back into 156; the printer may
understand the code 156, or it

~- may need to be sent a control
sequence such as
<e>,<ESC>,

<BSPACE>,< “” >. Text
can be saved in native ASCII ©

codes, LICS or the ASCII codes |

of another country

IAN McKINNELL

numbers is a very complicated task. Secondly, if
the translated text is longer than the English —
almost invariably the case — the program will need
more bytes to store it. This will alter the addresses
of all the subsequent code, thus making a_
nonsense of the loops and subroutine calls.

Another problem is syntax. When an English
user wishes to operate on a file the syntax is
COMMAND followed by FILENAME. However, this
approach is not standard in other European
languages. In German, for example, it is logical to
enter the filename first, followed by the command.
A similar problem is encountered in the method of
entering the dates, which has caused problems
even in Britain. Both 1-2-3 and Symphony permit
the use of dates in formulae to calculate changes in
values over time. In America, the normal method
of entering the date is Month/Day/Year.
However, in Britain and many other parts of
Europe the standard date format is Day/Month/
Year. Unless a software package can be
manipulated to take account of differences in the
way commands and data are entered, the result
will be at best confusing and at worst complete
nonsense. |

Software publishers must also consider the
different European character sets. The French
alphabet includes letters such as é and a, whereas
the German and Scandinavian languages include
the letter a in their alphabets. To complicate

matters different alphabets place these letters in a
different order, creating havoc with any sort
routine unable to cater for these differences.

PROGRAM DESIGN
In translating Symphony into the major European
languages, Lotus decided that the only reasonable
way to set about the problem was to design the
program in such a way as to allow for easy
translation. This approach was not adopted with
the earlier Lotus 1-2-3 package, and as a result the
company has had great difficulty in translating
this. However, Symphony has been successfully
translated into French, German and _ the
Scandinavian languages and the company is
working on an Italian version.

In order to overcome the problems of locating
the text within the code and trying to squeeze the
new words into the available space, Lotus has
adopted a modular construction of the program.
There are two divisions within the program: the
source code containing the program routines, and
a data segment containing the text area. This -
system of isolating the text from the source code is
known as localisation. Organising the program
into this format resolves two of the main
difficulties. Firstly, having the text in a separate
segment means that extra space can be set aside
for any differences in word lengths and text may be
extracted from the program much more easily. A
utility extracts the text areas from the code; these
can then be translated and dropped back into the
data segment. As an added bonus, the text can be
rearranged within the data section to take account

882 THE HOME COMPUTER ADVANCED COURSE

of the differences in syntax required for each
language. —

While translating the text itself there is a further
point to consider. Symphony allows commands to
be entered simply by pressing the first character of |
the command. Thus each command must start
with a different letter. Additionally, space
limitations mean that in packages where the literal
translation is too long a compromise may have to
be made.

Problems may also arise when translating
between national character sets. We have already
seen how different countries have different letters
in their alphabets. What makes the problem worse
is that there is no internationally agreed standard
for the codes. In the days of paper tape, when
seven-bit codes were common, the ASCII
standard was used almost without exception
throughout the world. With the advent of the
microcomputer and _ eight-bit codes, this
standardisation broke down as each manufacturer
produced its own version of the ASCII ‘standard’. |

This practice has also been adopted by different
countries. In customising the computer keyboard
for their own character set, many nations have
replaced some familiar English characters with
letters of their own. Thus communication between
computers configured for different languages is
becoming an enormous problem. An ASCII code
in German may mean something completely
different in Spanish.

This confusion was made even worse for the
translators of Symphony by the fact that many of
the single keypress commands used by the
program were characters such as @ that are absent
on non-English keyboards. IBM’s own solution to
the problem on the PC is to hold down the ALT key
and type in the decimal ASCII code on the
keypad, thus ruining any advantage gained by
having a single keypress command!

Lotus decided that the only way around this
obstacle was to develop its own set of codes,
known as LICS (Lotus International Character
Set). This set of 250 characters contains all the
letters used in the main European languages and is
held in every copy of Symphony. Translation
involves configuring the program so that the code
received by a foreign language keyboard is
translated into LICS and can thus be understood
by the program. To simplify the process of printing
characters that do not appear on the keyboard,
Lotus has managed to reduce these characters to a
single press of the ALT key and a single number
between 0 and 9.

The translation process for a business package
is a time-consuming and costly operation.
Translation takes an average of nine months and
can cost anything from $10,000 to $100,000..
However, software houses can no longer afford to
ignore a market of 300 million people in
continental Europe. Despite the investment
required to translate a software package, the
benefits to both customer and developer alike
make it well worth the effort. .

F.

entrance he

of these

In the last part of our adventure game
project, we started to look at the special
locations used in the Haunted Forest game,
concentrating on the decision presented to
the player to enter the tunnel. Now we look
at the rest of the tunnel routine and design
a subroutine to produce random ghosts to
haunt the forest.

In the last instalment, we discussed the special
locations that have a tunnel entrance: at these
locations the player is given the opportunity
either to enter the tunnel or retreat back down the
path that led to the entrance. If the player elects to
enter the tunnel, then a new subroutine is called
at line 4655. Let’s now look at the subroutine that
handles the option where the player goes into the
tunnel. This subroutine is written according to
certain rules laid down by the game's designer. ‘To
begin with, the player can pass through the tunnel
only if he is carrying the lamp; and, in addition,
the player must light the lamp to see the way
forward.

As the player must be able to issue instructions
while inside the tunnel, the subroutine should
begin with a sequence that accepts an instruction
input and splits this up for processing. We can
allow the player to use some of the normal input
instructions — such as TAKE, DROP
but here we must be careful. e location
pointer, P, is concerned, at the
mouth of the tunnel 4 0 in
certain permitted d
must suppress the G(
inside the tunnel.

On returning
subroutine, if aG
‘move flag’ (MF)
have changed.
simply restori
‘norma

situ ,
ed to allow tunne

other

command
variation, U either

catch-all |
looping bac

If the com:
to make seve
command:

randomly ap 3
around the forest, and they can be fended off only

Or a.

1. Is the specified object a valid object?
2. Is the specified object held by the
3. Is the specified object the lamp?
If the answer to all these questions is ‘yes’, t
the player will be allowed to pass through to
other end of the tunnel, as all the conditions
passing through the tunnel have been met. Thes
object checks may seem familiar. They are, in
fact, almost identical to those used in the TAKE and
DROP routines (see page 846). ‘Therefore, we can
use previously written subroutines to carry out
these checks. |

4700 REM ** ENTER TUNNEL #x
47@5 SN¢="YOU ENTER THE TUNNEL BUT IT IS TOO DARK
To"
710 SNS=SN$+" FIND YOUR WAY. "!GOSUBS500
725 PRINT! INPUT" INSTRUCTIONS"? 154

4730 GOSUB250@:REM SPLIT INSTRUCTION
4732 :
4735 IF F=@ THEN 4725:REM INVALID INSTRUCTION
4740 OP=P:GOSUB39@9:REM NORMAL INSTRUCTIONS
4745 IF MF=1THEN SN#="IT IS SO DARK THAT YOU CAN O
NLY SEE":P=0P
4747 IF MF=1THENSNS=SNS+" THE TUNNEL ENTRANCE ":GOS
UBSSO@:MF=8:G0TO9725

4750 IF VF=1 THEN 4725:REM INSTRUCTION OBEYED

4755 IF VBS="RETREAT" AND P=4 THEN MF=1:P=6:RETURN

4760 IF VBS="RETREAT" AND P=1 THEN MF=1:P=9: RETURN
4762 IFVBS<>"USE "ANDVBS< >"LIGHT" THEN SN®="I DON'T

UNDERSTAND"

4765 IFVBS#<>"USE "ANDVBS< >"LIGHT" THEN GOSUBS500:GOT

04725

‘4777 ¢

478@ REM ** SEARCH FOR LAMP xx
4790 GOSUB5S390:REM VALID OBJECT ?
4795 OV=F:GOSUB5450:REM IS OBJECT HELD ?
4797 IF F=@ THEN SN#="THERE IS NO "+W$!GOSUB5580:G
oT04725 mee
4800 IF HF=@ THEN SN®="YOU DO NOT HAVE THE "+I1V¢F
,1)!GOSUB5500:GOTO9725
4810 REM ** IS OBJECT LAMP 7? *x
4815 IF F<>2 THEN SNS="THE "+IV#(F,1)+" 1S NO USE"
:GOSUB5509@:GOTOd7e5
4835 REM xx SUCCESS *x
4840 SNS="YOU USE THE LAMP TO LIGHT YOUR WAY THROU
GH THE TUNNEL"
4845 SNS=SN$+" AND EVENTUALLY EMERGE FROM THE EXIT
.":GOSUB5500
4850 IF P=1 THEN MF=1:P=4:RETURN
4855 IF P=4 THEN MF=1:P=1:RETURN

SUPERNATURAL EVENTS
In addition to having special locations, such as the
unnel entrances, we can also program random
vents or perils into our adventure game. Up to

point in the development of our Haunted
e we have not mentioned ghosts, nor
pear on the adventure world map for

page 766). Instead, the ghosts
to the player as he moves

the

by taking a bizarre form of action. Before we look
in detail at the ‘ghosts’ routine, let’s consider how
we can incorporate the routines to generate
random appearances into the main program
structure. The main program loop calls a

ine at line 2700 to test whether or not a

‘THE HOME COMPUTER ADVANCED COURSE 883

al
io

fF = 0

oO

Jo
°o

°

°

|
|

new location is special in some way. This is also. 4325 SN®="THE GHOST MOVES CLOSER":GOSUB5500
4339 GC=GC+1:IF GC>4 THEN GOSUB4455:REM

the best place to incorporate the following piece 4335 print: INPUT" INSTRUCTIONS"? 188
of code to deci de whether. the program should 4349 GoSUB25@@:REM SPLIT INSTRUCTION

4345 IF F=@ THEN 4325:REM NEXT INSTRUCTION
generate random spooks: | | | 435@ OP=P!:GOSUB3Q00:REM ANALYSE INSTRUCTION .

2707 REM **x RANDOM GHOST xx i
4355 IF MF=1 AND YBS="GO"THEN GOSUB449@:GOTO 4325

4357 IF MF=1 AND VB#="LO0OK" THEN GOSUB2008: GOSUBeE3
5 2710 IF P>4 AND RNOC1><8.1 THEN GOSUB 429@:RETURN

Line 2710 first

| location has not already been designated as 4370 IF ves="KILL" OR VBS="FIGHT
special, since ghosts appearing in the middle of °'°_725 |
special routines
the location is

9@:GOT04325
4360 IF VF=1 THEN 4325: REM NEXT INSTRUCTION of all ensures that th ?

t t € current 4365 REM x*x* NEW INSTRUCTION WORDS xx

THEN GOSUB4425:G

: 4375 :
could make life very complex. If 4385 IF vBs="SING" THEN GOSUB4500:RETURN }
ordinary then, using the RND pt ee DON'T UNDERSTAND " : GOSUBS5@0 : GOTO4325

command, there is a 1-in-10 chance that the 4400 REM xx ATTEMPT TO MOVE xx
program will produce a ghost. RND commands 4405 SN#="YOU ARE TRANSFIXED WITH TERROR AND CANNO

a Te

generate ‘pseudo-random’ numbers — so called 4410 sns-sns+" MOVE... YET":MF=01:G0SUB5500:P=0P

because the pattern of numbers generated from 741° RETURN
4420 :

| _ power-up is predictable. To make the sequence 4425 rem *« FIGHT OR KILL #% :
| less predictable,

command for

Flavours’).

If the “ghos
another spé
confronted t

| , follows tit

inst
ce
CAS
1} LCA Cc oe 3
de chutes.

poneaanaea nd ieee urs sf
§ #e & |

5 ‘ $430 SNS="THE GHOST IS A BEING OF THE we use the RND command with a arenes aeees

negative operand in the Case of the BBC Micro 4435 SNS=SN$+" AND LAUGHS AT YOUR FEEBLE ATTEMPTS"

| and Commodore 64, and the RANDOMISE 7232 °s* 6° ' TO INJURE HIM": GOSUBS500

4445 RETURN
¢ See the Spectrum (see ‘Basic asa :

- 4455 REM ** DEATH xx

| 4460 SN#="THE PAIN IN YOUR CHEST BECOMES UNBEARABL

_

; i ite
ea ; paves panecnnces

Bunatone araenorent Rete aeat ie E " é ‘
? R = -_ sayy 28 Sebueensnunore B ue isso

Fad 4) RNO ¢ 1 ? PORES SR BR ease ere ore ue RO nee _ sae BU
s e Has i ae arate a8 Bat BAO

Be eae aint i nee Bit pee 4465 SN$=SN#+" AND YOU SLUMP ONTO THE LEAFY FOREST
we enter FLOOR. ":GOSUB550a

4 4470 SN$="YOUR SPIRIT RISES FROM YOUR INERT BODY"
player IS 4475 SNS=SN$+" AND YOU FLOAT AWAY INTO THE MIST TO

eroutine = 39 IN’
e ghostly apparition. The ro ae 4488 SNS=SN$+" THE OTHER TORMENTED SOULS OF THE"

ete, : FRG Ge Ge PRs ae B MELO ew | ‘
ree 1 Ecner wo ¢ 4485 SNS=SN#+" HAUNTED FOREST. ":GOSUB5500 «i ‘ " bE if Basa ARN
. A 5 Ba an oo | ‘

ee
Reacean anenncee Beetentae

i Rare nit Eee parents Broan Soares deat

: pageant oh
Reaseirepsessissae i rey a 2

ateuaaaets : aie Baten e < ce _ SERENE i a A S aaa
: at Rea alg om Wy ae BE me eS i ‘ : i

ist eae 3 feat igh Fs Ses tb ‘7 ‘y y < .
maa @ ty Y 8 Sea of GBF Rae ia Tae Bs be BE EG fe Geen
Fa ¥ oe Ft eats Bas e See orate ratte ~ a sas i ed

rasta 5 nate soa ares aie Rurtiiye RenRER ; BH asoE ats Buca Hae EEO CARO 8 auaane antares a aera eens pace

A ae Be ay ce

Repeater ata

cy 1, db

; .
nih . Gris iy Beaotiey pénrneaniaiin Parana i

Ba Renee Pa EER
Buna Reni, RD Rea i

£ Cleat Willi. :
oa Bh Reeth 8 a

ae Beenoscnan! % Bor niet ss si cane CRORE sea } : eee Pa NERS ,
a BW me dat he a BR - ie deat |

‘A a q Hee D ut, 12 eR Li ne gu

_ pe i { any..of the normal commands, or commands
—1ES ge into nstne |. cy

srnnaind
ee oe < | : of no use to the player, are issued, the

fh Foreaoray t q Ba ei fs Har Re RoRenOT ERAN Be i ce eee z e Ga i
arate aie ie =

pene

ae oe

ig : Se eenoraH ie fi aaa > 38 § ie i F SER NCR RATT ‘pie e a B i Bi aa ae i ay
pean as i He i. ~

3 aaa

ee repeat ydiaers eisai Hanoy at a as RRR gs a8 ae a i Doc eMR Gee REE Cam ae ieee i — Ve

§ AE

na SRNR

sae . EG ne
Bae ss - oa ia Ho cue é ce ae
asain 3, y ‘Pe "
LRG nen c ei Li

i ERR _ a a
R 3 c nA

Rane ogc i 8 Vee

oe :

ps Y
-

Racor a

esate nee 5
sboporenasenet
att oe Bashan:

goose Gia
reece A

= GHOSTS BY LIZ DIXON Perea recor Baran nity penta Base Bah Bett

oaeoeuni nara Boren ABER G et Sebarnaeanscaaernaanac Rorceenuserenenonarod eaGeaeey

subroutine. —
message that th

ae a : com : pe Boe EER ua oto Pe ues
COPEL TTT b eee PM eee aaa

P in Cortera SES Hssseist a ee sty au EEE eee i . oN é Ee cor Hac UE gp EE fp ;
oo i a ae Hie, i tt

Boa maroeanaTert:

& e e
78 ce Son ee ee rn ae ‘ Fhaeat st cae fa & Gee bane ee | —sés—SCSAOtNe Will obey them if possible and loop bac gan x as GHA Rana Rasa aoe ae a Be ses Be i RO 58 ditined ‘ sii :

oF i. . / Haeeoeanntts 3 coeanaea ie Bane ie 2 Baar Beara zi i enor Sent e
. 0 . ea es gm 1 h oe = | ~~ ire extn oe There is a sting in the tail
— |. a _ i — oe : ee a oe :

. gy a of this routine,..be cause a count is kept of the LL a a geet ioe ty BRON ERA aTNT G i GAN ReRGES
: NE CS ee CC _. ee . LL _ - | a oe | ae ary Pm ae & UF

Sune Gece ee o a - 4 . ee - eae En na oe oth, Se act Sea Bom, Fc Bae cen - ae my aa eae ia a Bae ae ary BARN sf 3H sits i . oe
; , 3G ee eee

aa a “ _ aN fi Boar ie abe reat i 5 F ; "B oe Pp . L a ! | J the ghost. If more than four
cane oe _ i “WAC sia REE ena Bann ser Bee sense 2 : 7 Y r Bs tan =... de |. truct sued, then the ghost moves 1n to

ee | Be CG i oe Bee ie Bia © Be ae 40 as] ©) as | : Ba i oi oF ;
2 a ys aay Bes i Hatenisian tet 3 hie iain

| |. m| way that the player ca

oe os a NG a song. If the player elects to
=... su n a choice of three songs, one of

_
a = . a e

a +h i

eo sat

PD LAI 4 J a lA
: ES - a

5 aa ge ‘a Sia Balt By : : : "iy DREHER ha as Bacto at
Se see Di Be a Weed E fee n t a te FS 4 Pa wi me a e d a EL ae Bu se directly userul ag es nERSTA jel) e Ce lily chosen appease the ghost . ee ae ey Be hee a age ‘i n ‘ : aaenecanace BopoHinos gee 8 & ~ fesel e | A | J Ey 2 we 1 rp cF ife ; bm We hh ee EE ea IC 2 a

_ | fe ot j oo . _ oe can — : » ue Wrong tune iS cnosen, the player S
ise nit nt i As C Ut, UOWCVCI, WC C 1 c iG ee . at 0 _ a | s iil. he army of itaaenmeed souls who

Bg 4S ds yi | iC a
: SeaR SiGe Gauletnad aaah ee Hhsdagtaathad ee it 4]

the situatic n. An A i their way in the Haunted Forest:
fe OO ef Ga, ee ee Be S YG ae a

Ba) sae nena
: ers

a _ REM #8 Su WG kk : . |

SNS.” (OW THREE SONGS. WHICH ONE WILL YOU

THE THEME FROM 'GHOSTBUSTERS'":GOSUBS Breau peor Pe
it enasGnAayG FRE uae ta

SN#="2> 'THERE'S A GHOST IN MY HOUSE'":GOSUBS

me 2

4 4520 SN#="3)> 'WAY DOWN UPON THE SWANEE RIVER'":GOS

di | UBS55600

ISp ays a 4525 PRINT: INPUT"MAKE YOUR CHOICE": C#

QO not assist the 4539 IF VAL‘CS)>3 OR VAL‘<C#)<1 THEN PRINT:PRINT"IN
':GOTO45e25

oe:

oe
Hoare

Ss ~

pauarurarrtrtiriny miamnnG retro Fa ent) FRR: Bes
oe ee ne

ts EEO RA: Eerste “Rae

i eons Be bse ta ee S . player, but does so4 ra Wet ay that is substantially jess cr=inTcRND(1)¥3)+1
more attractive

UNDERSTAND.

42960 REM ***x*x RANDOM GHOST S/R xxxx 4550 SNS=SNS+" THAT TUNE AND LUNGES AT YOU.

4295 SR=1:GC=0

eee

than § ame gaa | DON’T 4537 IF CR<>VAL(C#>) THEN GOSUB4542:REM WRONG TUNE
4540 GOSUB4565:REM CORRECT
4542 REM **** WRONG TUNE S/R #&xx
4545 SN®="THE GHOST HAS A PARTICULAR HATRED OF"

: GOSUB

Brean

5500

4300 SN#="YOU FEEL A COLD SENSATION RUNNING THE LE 43555 GOSUB 4455:REM DEATH

NGTH "

4305 SNS

AR IT IOF

SN$+" OF YOUR SPINE. SUDDENLY A WHITE APP 4565 REM ** CORRECT TUNE xx

4360 :

4570 SN#="THE GHOST IS APPEASED BY YOUR RENOITION

$3186 SN®=SN$+" APPEARS FROM OUT OF THE TREES AND" OF THE TUNE’

94315 SNS=SNS+" MOVES TOWARDS YOU":GOSUB5500:REM FO 4575 SNS=SNS$+" ANDO VAPOURISES INTO THIN AIR'

RMAT
4320 :

GOSUB
5500
4588 RETURN

884 THE HOME COMPUTER ADVANCED COURSE } |

|

S

THE HOME COMPUTER ADVANCED COURSE 885

POWER PACKS.
We look at four spreadsheet-based
programs for home micros — Micro Swift,
Practicale II, PS and Vizastar — packages
that some believe prove that ‘the ordinary
home micro has enough power to compete
with the bigger business systems’.

Micro Swift, Practicalc II, PS and Vizastar belong
to a new breed of enhanced spreadsheet-based
packages, which have clearly had their inspiration
from Lotus’s integrated 1-2-3 package and its
successor, Symphony (see page 644). But whereas
the Lotus 1-2-3 and Symphony packages were
written for the IBM PC and compatible machines

_ (1-2-3 requires 296 Kbytes of user memory to
run, and Symphony demands at least 320
Kbytes), the new packages are designed for home
micros. In some respects, the four packages we
look at here have wrought miracles in compressing
many of the features available on the larger
packages into the 30 Kbytes or so of memory

available to the user of micros such as the
Commodore 64.

However, as yet, these ‘mini-Symphony’
packages can offer only two of the four options
that make the more powerful (and expensive)
packages so attractive. Given current hardware
limitations, to try to incorporate all four options —
spreadsheet, database, word processor and
programmability — would undoubtedly
necessitate the sort of compromises that have
made the Three-Plus-One ROM-based software
of the Commodore Plus/4 something of a
disappointment (see page 709).

RELATIVE STRENGTHS
Let’s consider some of the options offered by
these four programs, to compare their relative
strengths. PS, Micro Swift and Vizastar are. all
programmable, to a greater or lesser extent. This is
an extremely valuable facility, since it allows the
user to automate functions that would otherwise
require many keystrokes to carry out — in the
same way that keyboard macros are used with
Lotus 1-2-3 (see page 784). The three programs
do this in different ways, and we will consider
‘their separate approaches in turn.

Modules are programmed on the PS package
using familiar BAsIc commands. These modules
are then saved by pressing <f3> and executed
using <U>, or, alternatively, they can be auto-
executed on loading by SAVEing them to disk witha
full stop after the program name. The package has
a range of helpful programming facilities: for
example, it can GOSUB to a subroutine in a

886 THE HOME COMPUTER ADVANCED COURSE

program from a formula within a cell, simply by
inserting the GOSUB command within the formula.
Functions can be defined using the FN function,
and the program also has the facility to pass string,
row and column, and numeric values. |

Micro Swift can be programmed by simply
placing a list of commands in column Z — the first
command giving the name of the program,
preceded by a hash sign (#), and the last line
containing the command @QUIT. Let’s consider a
simple example:

Z1 #SUM
72 @SUM(A1,A3)
73 @ASSIGN(Z2,A4)
Z4 @QUIT

This program will add the values contained in cells
Ai, A2 and A3, and then assign the value, now found
in cell Z2, to cell A4. The program is called with the
instruction #SUM.

Of all the packages considered here, perhaps
the simplest to program is Vizastar, since the
commands consist of the initial letters that would
be pressed to execute them manually. Thus, to use
a specific database, you would press the CBM key
followed by D(ata), U(se), D(atabase) and the
name of the database. Finally, you would press
<RETURN>. In programming, the slash sign (/) is
used in place of the CBM key, so that /
DUDname[RET] will execute the action if <f8> is
pressed. Function and editing keys are
programmed by pressing <CTRL> plus the
appropriate key, and this letter is printed out when
the function is used in a program. However, when
the cursor keys are programmed in this way, they
are printed as [up], [down], [left] or [right].

Vizastar’s database is a powerful
implementation, actually using a section of the
notional sheet (rows 1,000-plus) not otherwise
available to the user, to store record formats. Each
record can consist of up to nine screens, and they
can be accessed by the Key or Next, Prior, First, Last
or Current commands (each ‘utilising the initial
letter from a command menu). Records may also
be Added, Replaced (modified) or Deleted.

The fields have letter names, starting with A and
finishing with BK, which relate to the columns of
that name in the spreadsheet. Therefore, as an
example, search criteria can be set up on a blank

- line of the spreadsheet. A is always the key field —
the field on which data is sorted. _

Practicalc II is a spreadsheet that uses a ‘long
label’ facility, which allows text to spill over from
one cell across any blank adjacent cells. This
facility allows the program to operate as a word
processor with a maximum line length of 100

characters. This option has most of the common
word processing facilities, including word-wrap,
block move, insert and delete.

It is also possible to LOAD a spreadsheet into part
of such a document. The spreadsheet would still
be ‘active’ — meaning that its formulae, values or
other contents may be modified for the purpose of
the main document, without, of course, affecting
the sheet on disk. ite

Though memory limitations prevent more than
a couple of required options to be accessible within
any one program, all four of these programs can
access word processing or database files produced
by other programs from the same publisher. For
example, Vizastar can handle word processor files
generated by Vizawrite; Micro Swift can access
database files produced by Micro Magpie; and
Practicalc and PS can use files from Practicorp’s
Practifile. Indeed, since they all utilise sequential
formats, they can all access and manipulate files
from each other, as well as completely unrelated
programs, like the Easy Script word processor. If
this isn’t exactly complete software integration, it’s
taking us very close to it.

THE HOME COMPUTER ADVANCED COURSE 887

Between The Words
_ Justification — right, left or
centred — is available on most
word processors. If you look
closely, you will see that this is
achieved by varying the
spaces between words

INTERRUPTS
An interruptis a signal to the microprocessor that
causes control to pass from the next instruction in
the current program to the start of an interrupt-
handling routine elsewhere in memory.

There are two kinds of interrupts. Software
interrupts are generated within a program, usually
to transfer control to some part of the operation
‘system. Hardware interrupts generate a signal on
the reset pin of the processor. This causes a break
‘in execution of the program and is followed by a
hardware reset, which restores the system to its
power-up state.

Interrupts are used for a variety of different
purposes. A program may want to use the
operating system for a specific operation and will
generate an interrupt — known as a ‘supervisor
call’ — which tells the operating system
management process to expect a call to the
operating system. This is netted as a ‘voluntary’
interrupt.

A similar process will occur with ‘involuntary’
interrupts, but in this case the interrupt is
generated by the BAsic ROM when an error is
detected within the program. This interrupt
generally causes the program to crash, and
displays the appropriate error message. “Timer’
interrupts occur at fixed periods of time when the
system clock is updated, and may be used to check
if a particular event has occurred — for nl in
the case of sprite detection.

Finally, there are interrupts geiibrated by
peripheral devices. Information is sent to a
peripheral via a buffer queue, which allows the
processor to carry out some other operation while
the data is being transferred. When the buffer is
empty, the peripheral generates an interrupt to
stop the processor’s current operation and to
signal to it to transfer another buffer full of
information.

JOB CONTROL LANGUAGE
Job Control Language(JCL) is a language, usually
consisting of operating system commands, which
controls the way that the system runs a program or
a ‘job’. JCL is not widely used on microcomputers
at present (although CP/M’s batching facility is a
primitive JCL). However, it is extremely
important in mini- and mainframe computers
where a suite of programs, each with a different
application, is held on tape or disk. For many tasks
on a mainframe, several programs may be
required to complete one particular job — number
crunching, printouts, sorting, etc. Rather than
have an operator manually loading and running
each program separately, a job control language
program is used. A JCL program will normally
load and run the programs required for a
particular job, initialise any input and output
devices, open files and deal with any errors that
may be generated. JCLs can control the sequence
of the programs being executed and support
conditional statement structures, to allow for
branching at the end of programs.

888 THE HOME COMPUTER ADVANCED COURSE

JUMP
A jump instruction, also known as a ‘branch’,
takes the program out of its normal execution
sequence of instructions and passes control to
another part of the program. In Basic, the jump
instruction is the GOTO statement. In contrast to the
operation of a GOSUB command, GOTO does not
cause the current value of the program counter to -
be saved on the stack for recall later. Should the
programmer wish to return to that address,
another GOTO has to be contrived.

Jumps can be either conditional or
unconditional. A conditional jump can _ be
represented schematically thus:

IF condition is True THEN Jump

On the other hand, an unconditional transfer
always causes a jump whenever it is encountered
within the program.

JUNCTION
The boundary between two semiconductors with
different electrical properties, or between a metal
and a semiconductor, is known as a junction. This
is a vital component of the transistor. The most
common type is the p-n junction, where p and n
indicate positive and negative semiconductors
respectively. Because the n-type semiconductor is
negatively charged with respect to the p-type,
voltage builds up across the junction when a
current is applied to the transistor, and this causes
the electrons to cross the junction at a higher
voltage. This potential difference between the
sides of the junction is applied in the construction
of amplifiers and rectifiers.

JUSTIFY
Justification is a common feature of word
processing programs. Characters are positioned
on the print line so as to produce a uniform Higa
and/or left margin on the screen.

Justification is also used in machine code. A bit
pattern can be moved within a register so that the
first or last non-zero bit is positioned in the least, or
most, significant bit register. This can be important
when a particular bit is to be tested, and is required
in floating-point formats, where it is called
normalisation.

IAN McKINNELL

ky

‘measures 520 by 330 by 80mm

RESEARCH FELLOW

Research Machines is well known as the
manufacturer of the 380Z. computer, a
machine originally designed for research
and development purposes, which proved
extremely popular in UK schools. Now, the
company has produced another
microcomputer aimed at the lucrative
poh aaa il ial — the wtte A802.

The ial 4802Z is iS available in shee a neavenked

or a stand- alone version; we looked at the stand-
alone. On first appearances, the machine is very
different from its predecessor. Whereas the 380Z
consists of a large black metal box containing the
computer and the disk drives connected by a cable
to the external keyboard, the Link 480Z has a
sturdy plastic casing, with the keyboard built in
and the disk drives provided as an optional
external unit. The 480Z is not a small machine — it

but its
streamlined appearance is more pleasing to the
eye than the functional and rather ugly 380Z.

The machine has a standard QWERTY
typewriter keyboard, and the keys are firm with a
sureness of touch that makes them ideal for word
processing. The control keys, including a line feed
and Repeat key for screen editing functions, are
found to the left and right of the QWERTY
layout. The only criticism of the keyboard is that
the Return key is a little too small for ease of use.

On the right-hand side of the keyboard is a
cursor cluster. In each corner of the cluster is a
programmable function key — the uses to which

_ these are put are determined by the application
being run at the time.
A large selection of interface ports, situated at

the back of the machine, allows the computer to be
connected to a wide range of peripherals. On the
extreme left is an RF jack socket, which enables
the machine to be plugged into an ordinary
television set. To the right is the RESET button.

The Link 480Z has two different sockets for
monitors: a five-pin DIN socket, to allow the
computer to be connected to the popular
Microvitec range of monitors; and above this an
eight-pin DIN socket for other types of TTL and
RGB monitors. An accessory interface is located
between the monitor and cassette ports. This is a
serial input/output port that allows the
connection of external devices.

To the right of the cassette port is the parallel
input/output port, for the connection of parallel
devices such as printers. Although the interface is
not a Centronics standard, it is Centronics-
compatible — meaning that while all the relevant

lines are present for a Centronics device, they are
not in the correct order. A little rewiring should
produce a fully standard Centronics port.

The Link 480Z also has a pair of RS232 serial
ports that enable the machine to be interfaced with
devices such as serial printers and the twin disk
drive. Next to.the serial ports are 10 DIP switches.
The first Switch, marked R, allows the operator to
disable the RESET switch. Similarly, the second
switch enables or disables the internal speaker,
positioned beneath the keyboard.

The eight DIP switches at the extreme left of this
range allow the user to set the network address;
they are read as a binary number to give the
computer an identification when it is linked into a

network. As the 480Z has eight such switches, it
enables up to 256 different machines to be
networked. The network cable itself is fitted to a
video jack on the back of the computer.

The back of the machine also features a fan to
keep the computer cool, an on/off switch, a fuse
and the power cable.

THE DISK DRIVES
The MD2 twin disk drive is separate from the
computer itself. Surprisingly for a modern micro,
the standard model is connected to the computer
via a serial, rather than parallel, interface and
plugs into the second RS232 port. Despite this, the
transfer rate is 38.5 KBaud — comparable to
many micros with parallel data transfer. The twin
drives use the standard 5’/, inch floppy disks; they
are double-sided and double-density, and are

THE HOME COMPUTER ADVANCED COURSE 889

Elegant Appearance
The sloping keyboard and
plastic casing provide a more
elegant appearance than its
predecessor, the 380Z, although
itis still a large machine by
modern standards. This is
because there are two layers of
circuit boards within the
machine, one for the main
computer functions and one for
networking

wd
=
lu
>
Lud
Ke
wm

2
cc
ag
oO

labelled A, B, C and D. The drive casing is the
same solid plastic as the computer, and operation
is extremely quiet by comparison with some
business machines that sell at twice the price.

On the back of the drives is a pair of RS232
sockets, one to connect to the 480Z and the other eo
to allow devices to be ‘daisy-chained’ together; goft) faa
these also have their own mains power supply. The
disk filing system, which manages the transfer of

- data to and from the computer, is fitted inside the
disk drive casing, rather than within the computer.
This use of ‘intelligent’ disk drives means that the

computer can be doing other things while the disk
management is left to the drives themselves — thus
conserving the memory for system use.
When the machine is switched on, the user is

prompted either to enter the ROM-based
extended BASIC, or to see the HELP menu. Pressing

_ H (for Help), displays the list of available ROM-
based options. These are mainly concerned with
the input/output system. The operator can choose
to load systems programs from either cassette or
disk, or boot the network system. The cassette
speed or the printer options can also be selected.
There is a Front Panel option (essentially a memory
monitor), which enables the user to examine and
alter the processor registers and the memory
locations. Associated with this option is the Jump
command; this allows control to be passed to an
address in memory. For example, the command
J103 passes control to the warm start vector.

SCREEN RESOLUTION
A number of screen resolution modes are

available to the 480Z. These range from the 80 by
25 text screen to the 640 by 192 ultra-high

_ resolution display (although this can support only
two colours on screen). ‘There are a further three
colour modes — which, in medium resolution,
support the full range of 16 colours.

Like the 380Z, the Link 480Z uses the Z80
microprocessor. This enables the computer to run
a wide range of available software, including, of
course, the CP/M _ operating system. The
availability of software was possibly the prime
reason why Research Machines decided to stick
with this chip rather than adopt a more modern
processor. Although the company claims software
compatibility between the 380Z and 480Z, some
software called from BAsic generates a disk error
when the 480Z attempts to read the disk.

' Inside the machine, provision has been made
for the addition of extra chips. Although this
facility is not comparable with the 380Z, which is
designed so that extra boards can be easily fitted, it

-does mean that extra ROM-based applications
can be added — such as a digital-to-analogue
converter to enable the accessory port to be
connected to an analogue device.

__ Included with the computer is a systems disk,
which includes a number of demonstration
programs, a version of BAsIc with disk-handling
commands and the CP/M operating system.
The design of the Link 480Z seems to suggest

890 THE HOME COMPUTER ADVANCED COURSE

that Research Machines’s intention was to develop
a computer that would satisfy those school users
who do not need the rugged flexibility of the
380Z, yet need an adaptable all-purpose machine.
In this, the company has certainly succeeded. It is,

however, a disappointment to find so little
innovation in the machine, and the large size of the
computer remains a mystery. By retaining the Z80 5
chip, the company has decided that the availabiity ‘

Schools Pack
The bundled software in the schools pack given
away with the 480Z is excellent value for money.
There are 12 disk-based packages provided, each
one certain to give maximum educational value.

Four languages are included in the package.
SBAS is a version of structured BASIC, and is
regarded as a Superb implementation. The language
contains a wide range of control structures for
program flow, including WHILE... ENDWHILE,
CASE...ENDCASE and IF... ENDIF. There is also
provision for procedures, and global and local
variables. The machine also supports an extensive.
implementation of PASCAL, which would equip a
student with a full working knowledge of the
language. The documentation provided with the
language, like most Research Machines manuals, is
not exactly light reading, but is detailed and
thorough. LOGO is also given in an excellent
version, although some of the commands are not
standard. For example, this version uses the
command BUILD, instead of TO, for creating
procedures. There is a partial implementation of
LOGO, as well, called ARROW. For low-level
programming, ZASM provides Z80 Assembly
language for the development of machine code
programs.

To assist in the development of typing and word
processing skills, four different programs are
provided. Touch'n’Go is designed to develop touch-
typing skills. WORD is a beginner's word processing
course, intended to teach pupils the principles and
techniques used in word processing. For a full
implementation, WordStar is also provided with the
bundle. TXED is a text editor that can be used either
for word processing or program development.

Quest-D is a database that has been specially
designed to teach the principles of data information
storage and retrieval. More specialised is SIR
(Schools Information Retrieval), which is designed
to catalogue the library resources in a school and to
teach the techniques of librarianship.

Finally, Telesoftware is a viewdata system that is
particularly useful when used in conjunction with
the network capabilities of the 480Z. It also enables
the user to dial Prestel

of software at a modest price outweighs any “Ne4
advantage obtained by choosing a more modern #5
16-bit processor. It must be said, on the other #%)
hand, that the bundled software in the schools 7
pack is certainly a bargain. Yet at a time when the x4
IBM PC is becoming the standard for busines
machines, the choice of the Z80, rather than the
Intel 8088 chip (which school children will
actually be using in the business machines of the
next decade), seems a little short-sighted.

LINK 4802Z/HARDWARE —___

CHRIS STEVENS

LINK 4802

Stand-alone version of the Link

A80Z, list price: £685.40
(as above, plus hi-res graphics)
£830.30
MD2 twin disk drive, list price:
£918.80
Note that substantial discounts

are available for school and other

educational users

520x330x80 mm

Z80, running at 4 MHz

64 Kbytes of RAM

Text: 80x25 characters 2
Medium resolution: 160x192 with
16 colours
High resolution: 320x192 with
four colours
Ultra-high resolution: 640x192
with two colours

RF port, monitor, RGB/TTL,

accessory port, cassette, parallel
port, two serial ports, network
video jack

BASIC, LOGO and PASCAL

65 keys, including the cursor
and function keys

The manuals are thorough and ~
contain all the information
required for the beginner to
advanced user. However, some of
the information is difficult to
locate

The Link 480Z has been
developed for the classroom and
in many ways is ideal for schools.
The ability to run CP/M and the
wealth of available software,
together with its networking
capabilities, make it a versatile
machine. The computer is well-
built and will give many years of
service

This is an old-fashioned
computer, which, when compared
with machines with similar
capabilities, looks somewhat
overpriced

THE HOME COMPUTER ADVANCED COURSE 891

— IN TIME
We begin : a short series of investigations
into the use of LOGO in creating geometric
patterns. Here, we show you how the
language can be used to draw ‘cycloids’ _
shapes based around circles.

Earlier in the course, we gave a simple method
for drawing a circle using LOGO:

TO CIRCLE
REPEAT 360 [FORWARD 1 RIGHT 1]

END |

This will give a fairly good approximation of a
circle. However, the drawing is painfully slow,
although it can be speeded up a little by hiding the
turtle. If this procedure doesn’t look like a circle
on your screen then you need to reset the aspect
ratio — you should keep experimenting until je
get a circle rather than an ellipse.

Of course, CIRCLE does not actually draw a
circle. It draws a 360-sided polygon, but for most

purposes this is a good enough approximation.
Indeed, for many purposes a polygon with 60, or
even 30, sides is quite adequate — and it is much

_ quicker to draw. In this project, our circles will be
either 60- or 120-sided polygons, but you can
vary this if you like. Larger numbers will give finer
detail, smaller numbers will give quicker drawing.

First of all, let’s consider what a cycloid actually
is. Imagine a circle rolling along a straight line.
Mark a point on the circumference of your
imaginary circle, and then trace out the path this
point takes as the circle rotates. The resultant path
is what is known as a ‘cycloid’. We will use this
definition of a cycloid to help us build a program
to draw one.

As a first approximation of the cycloid, we'll
take ‘snapshots’ after each 6° turn of a circle
rotating along a line across the screen. As the
circle turns 6°, it moves (2 X pi X radius + 60)
units forward along the line. So the x co-ordinate
of the centre of the circle will have increased by
this amount (the y co-ordinate will, of course,
remain unaltered). At the same time, the heading
of the line joining the ‘drawing point’ to the centre
of the circle will have increased by 6”.

The strategy used in the program involves four
simple tasks:
1. move the circle’s centre;
2. put the turtle at the centre;
3. point it in the right direction;
4, move it forward by the length of the radius.
This takes the turtle to the next position of the
drawing point. We draw a dot on the screen at this
point and then repeat the whole process.

892 THE HOME COMPUTER ADVANCED COURSE

The SETSCREEN procedure is the first
procedural call from CYCLOID: this deals with a
few minor details necessary for the display.
SETSCREEN’s major tasks are to set the aspect ratio
you will need a different value from ours) and

select NOWRAP mode, so that the program stops
when the curve goes off the screen.

TO MOVECENTRE
MAKE “XCENT :XCENT + :STEP

~ END

FORWARD 1
BACK 1

PU
END

If, instead of taking a point on the circumference
of the generating circle, we trace the path made
by a point inside the circle, then we get what is _
known as a curtate cycloid. If we take a point
outside the circle, but attached to it, we get yet
another kind of cycloid — a prolate cycloid. 'To
observe these effects we can modify CYCLOID to
take an input representing the distance of the
drawing point from the circumference. Positive
values give curtate cycloids, negative values give
prolate cycloids.

TO CYCLOID
SETSCREEN
MAKE “ANGLESTEP 6
MAKE “PI 3:14
MAKE “RADIUS 15

_ MAKE “CIRCUMFERENCE 2 * :PI * :RADIUS
MAKE “STEP :CIRCUMFERENCE / (360 /
-ANGLESTEP)
MAKE “XCENT (— 150)
CYC

END

TO SETSCREEN
| ASPECT 0.93

NOWRAP
DRAW
PENUP
HT .

END

TO CYC :ANG
MOVECENTRE
SETXY :XCENT 0
SETH:ANG~
FORWARD :RADIUS
DOT
CYC :ANG + :ANGLESTEP

END

TO CYCLOID :OFFSET
SETSCREEN
MAKE “ANGLESTEP 6
MAKE “PI3:14
MAKE “RADIUS 15
MAKE “CIRCUMFERENCE 2 * :PI * :RADIUS
MAKE “STEP :CIRCUMFERENCE / (360 /
“ANGLESTEP) .
MAKE “XCENT (— 150)
MAKE “DISTANCE :RADIUS — :OFFSET
CYC 0

END

TOCYC:ANG
MOVECENTRE

SETXY :XCENT 0

SETH :ANG
FORWARD :DISTANCE

DOT

CYC :ANG + :ANGLESTEP

END

JOINING POINTS
Marking the points with dots — as we have done
so far — gives us an easy way of visualising what is
going on, but we would get more attractive
diagrams if we could join the points together to
give a curve. The procedure JOIN draws a line
between two points:

TO JOIN :A:B
SETPOS :A
PD
SETPOS :B
PU

TO SETPOS :POS
SETXY FIRST :POS LAST :POS

END

The procedure is used with the co-ordinates of
the two points given in the call. For example, a
possible call is JOIN [12 34][67 89]. In our cycloid
program, we will need to keep a record of the old
position of the point, and then join it to the
present position. The final result of our improved
cycloid drawing program is:

TO CYCLOID :OFFSET
SETSCREEN
MAKE “ANGLESTEP 6
MAKE “PI 3.14
MAKE “RADIUS 15 |
MAKE “CIRCUMFERENCE 2 * :PI * :RADIUS
MAKE “STEP :CIRCUMFERENCE / (360 /
“ANGLESTEP) |
MAKE “XCENT (— 150)
MAKE “DISTANCE :RADIUS — :OFFSET

~ MAKE “OLDPOS LIST :XCENT :DISTANCE
CYC 0

END

TO CYC :ANG
MOVECENTRE

SETXY :XCENT 0
SETH :ANG
“FORWARD :DISTANCE
MAKE “NEWPOS POS
JOIN :OLDPOS :NEWPOS
MAKE “OLDPOS :NEWPOS
CYC :ANG + :ANGLESTEP

END

TO POS
OUTPUT LIST XCOR YCOR

END :

You may like to try some experiments with these
procedures. For example, maths text books claim
that the length of one arc of a cycloid is equal to
the perimeter of a square circumscribed about the | a
generating circle! Try modifying the cycloid- The Circumscribing Square
drawing procedures to test this theorem.

If you have a Loco that incorporates sprites, a
different (and better) way to write the program
would be to set up the drawing point asa sprite. /” _
One advantage of this method is that you could _
always find out where the point is by using TELL
and then XCOR and YCOR.

The Cycloid Arc

Rolling Along

A cycloid is the curve traced
by the movement of a point on
a fixed radius of a circle

rolling along a straight line.
The nature of the curve differs —
according to whether the
point is inside, outside, or on
the perimeter of, the circle

CYCLOID 10 CURTATE RADIUS=25

WA ere i ak dowaiie Lo ee ee x eee -RADIUS

PROLATE RADIUS=25
+(RADIUS-OFFSET)

+RADIUS

THE HOME COMPUTER ADVANCED COURSE 893

LIZ DIXON

WEIGHING

ane corapleted the coritrnttion of the
robot motors and microswitch sensors, we
must now calibrate the robot to allow us
accurate control when moving it through
measured distances and angles. We also
look at software that makes use of the
interaction between Sensors and motors.

Stépper motors are ideal for eouiol by dial
devices as they turn through a precise step every
time the motors receive a pulse. In order to relate
digital stepper motor control to the real world of
distance and angle, we must carry out some initial
experiments on our robot. These are designed to
determine the number of pulses required to move
the robot through various distances and angles.
Having performed these experiments we should
be able to determine average pulse/distance and
pulse/angle ratios that we can enter as constants
to programs. In future instalments of Workshop
we shall be designing software, that will, in
addition to other applications, allow the robot to
probe and build up digital representations of solid
objects. To enable the robot to function accurately,
we shall require the ratio values obtained from
carrying out the experiments in this section.

LINEAR CALIBRATION
We can make a guess at the pulse/distance ratio of
our robot by using some elementary mathematics.
As one pulse induces a 7.5° turn in the motors,
putting the motor output through a 25:2 gear ratio ©
means that one pulse will induce a turn of 7.5X2/
25 = 0.6° turn at the axle. As the Lego wheel has a
radius of 30mm the linear movement per pulse
can be calculated as follows: 1 pulse causes 0.6/
360X2XPIX30mm movement. Breaking this
expression down shows us that 1 pulse causes
0.1XPImm movement. Inverting this figure gives
us a theoretical pulse/distance ratio: p/d ratio =
3.183.

The calibration program that follows allows you
to run your robot through trials over various
distances. On each run the number of pulses and
the theoretical distances that should be travelled
are displayed on the screen. Using two 30cm rulers
end-to-end, you can record the actual distance
travelled over each trial. The program then
displays a table of the number of pulses, the actual
distances recorded, and the theoretical estimates.
An average p/d ratio is also calculated. This figure
is important so make a separate note of it. The
sample output from this program shows that our
prototype robot tends to travel slightly further for
a given number of pulses than theory would

894 THE HOME COMPUTER ADVANCED COURSE

IN

suggest. The importance of the exercise is that you _
find the p/d ratio for your robot and use it in sau
programs as required.

10 REM *¥** BBC CALIBRATION *x#*
20 DDR=&FE62:DATREG=&FES6U.
30 ?DOR=15:REM LINES 0-3 OUTPUT
50 forwards=4:backwards=2;DIM MD¢12)

60 FOR CC=500 TO 1700 STEP 100
70 ?DATREG=0
80 ?DATREG=(?7DATREG OR 1) OR forwards
70 PRINT CC,INT(CCePID/10

100 At=GETS 4
110 FOR I=1 To &&
120 PROCpulse —
130 NEXT I -
140 INPUT"MEASURED DISTANCE IN MM"
150 NEXT cc. -
160 ?DATREG=0:T=0'
180 PRINT" PULSES" ,"
190 PRINT
200 FOR CC=500 TO 1700 STEP 100
210 PRINT CC,MD(¢CC-500)/100),INTCCC*PID/10
220 T=T+CC/MD¢ (CC-500)/100)
230 NEXT CC
240 PRINT:PRINT "PULSE TO DISTANCE RATIO:"
260 END
270 DEF PROCpulse
280 ?DATREG=(?DATREG GR 8)
290 ?DATREG=(?DATREG AND 247)
300 ENDPROC

sMD¢ ¢CC-5009/100>)

MEASURED" ," THEORET."

s7AL2

1@ REM **x*x* CBM 64 CALIBRATION #*xx*x
20 DDR=56579:DATREG=56577
320 POKE DDR,15:REM LINES @®-3 OUTPUT
5@ FW=4:BW=2:0I1M MDC 12>) i
6@ FOR CC=500 TO 1700 STEP 100
7® POKE DATREG,@
80 POKE DATREG,<‘PEEKCDATREG OR 120R FW
98 PRINT CC,INT(CC*«) 718
198 GET AS:IF AS="" THEN 100
119 FOR I=1 TO cc
120 GOSUB 270:REM PULSE
138 NEXT I
140 INPUT"MEASURED DISTANCE IN MM":MD¢ (CC-500)7100)
15@ NEXT CC
160 POKE DATREG,O:T=0
170 REM *x LINES 180-260 AS BBC VERSION xx
175 REM **x BUT REPLACE PI BY w IN LINE 210 «x
270 REM ****x PULSE S/R kk
280 POKE DATREG,PEEK‘(DATREGOOR 8 |
290 POKE DATREG,PEEK‘DATREG)AND 247
300 RETURN

ANGLE CALIBRATION
We can calculate a pulse/angle ratio as follows: if
the wheelbase is 140mm, the turning circle
circumference = 140XPI. A pulse causes a turn of
360X0.1XPI/(140XPI) degrees, and the p/a ratio
is therefore 3.846.

One of the major problems involved — in
performing angular calibration is the accurate
measurement of angles. As for most applications
the robot will be turning through angles of 90° (or
multiples thereof), our theoretical p/a ratio tells us
that 346 pulses should be required for a right-
angled turn..

Mark on a piece of paper a pair of
perpendicular lines. On one of the lines make two
small marks on either side of the point at which the
lines cross to designate the starting points for the
robot wheels. Run the accompanying program to
turn the robot through 90°. The FOR...NEXT loop
at line 70 dictates the number of pulses passed to
the motors. The figure 371 is the experimental
value required to turn our prototype robot through
90°. Edit the program, altering the upper limit of

KEVIN JONES

Count=Count+1

Sensor=?(Datreg) AND 192

Is Sensor

=192?

BACKWARD

For K=Count TO Count+1

this loop, until the wheels of your robot align
exactly with the other perpendicular line drawn on
the paper. Further checks can be made. Replace
the direction ‘right’ (RT) with ‘left’ (LF) in line 60
and ensure that the robot also turns through 90° in
an anticlockwise direction. Doubling the upper
value in the FOR...NEXT loop should cause a 180°
turn. Ensure that the wheels finish at the same
points on which they started. If this is not the case,
a slight adjustment of the wheels is necessary to
ensure that they lie symmetrically on either side of
the central axis. When you are happy with the
position of the wheels, mark their positions on the
axles and glue them in place.

10
20
30
498
58
6a
7@

REM *xx*x*x CBM 64 TURN **xx

DDOR=56579: DATREG=S6577

POKE DODR,15:REM LINES 96-3 OUTPUT

L.F=6:RT=@

POKE DATREG,O

POKE DATREG, (PEEKCDATREG)OR 1)90R RT

FOR I=1 TO 371:GOSUB S@:NEXT I

88 POKE DATREG,@:END

9@ REM *x**x* PULSE SYR #xxx

190 POKE DATREG,PEEK(DATREG)OR 8

116

1ea

10
20
30
40
re]
60
70
80
90

100
116
120

10

20

30

40

58

68

65

78

86

930

35

1006

118

126

1304

148

101

102

16304

POKE DATREG,PEEK(DATREGIAND 247

RETURN ©

REM *#** BBC TURN ##*#
DDR=&F E62: DATREG=&FESQ

?DDR=15:REM LINES 0-3 GUTPUT
left=é6:riqght=0

?DATREG=0
?DATREG=¢ 7DATREG OR 190R right

FOR I=1 TO 371:PROCpul se: NEXT

?DATREG=0 : END
DEF PROCpul se

?DATREG=(7DATREG OR 8)

?DATREG=(?DATREG AND 247)
ENDPROC

REM *kk*k CBM BUMPERS *4*x

DDR=56579:DATREG=S58577

POKE DDR,15:REM LINES @-3 OUTPUT

FiW=4:BbI=e

POKE DATREG, *PEEKCDATREG OR 1.90R FW

REM xxk*x PULSE FORWARDS *xx*xx

CC=6

GOSUB 100@:CC=CC+1:!:REM PULSE

IF “PEEK *DATREGOIAND 192)=192 THEN

REM *xx** GO BACK TO START *x*xxx

POKE DATREG, (PEEK COATREG ANDO 190R BW

FOR I=i TO CC

GOSUB 19@0:REM PULSE

NEXT I

POKE DATREG,@:END

® REM k**x* PULSE S/R kxexx

M POKE DATREG, ¢PEEK*DATREGIOR 83

®@ POKE DATREG, (PEEK (OATREGDAND 2473

RETURN

7B

THE HOME COMPUTER ADVANCED COURSE 895

KEVIN JONES

896 THE HOME COMPUTER ADVANCED COURSE

16 REM **** BBC BUMPERS ****
28 DDR=&FE62:DATREG=&FES6@

36 ?DDR=15:REM LINES @-3 OUTPUT

40 forwards=4:backwards=2

56 ?DATREG=(?DATREG OR 1) OR forwards

6@ REM **** PULSE FORWARDS ****

65 count=6

7@ REPEAT:PROCpulse:count=count+l

8@ UNTIL¢?DATREG AND 192)<>192
9@ REM **** GO BACK TO START ****
95 ?DATREG=(?DATREG AND 1).0R backwards

10@ FOR I=1 TO count
11@ PROCpulse
126 NEXT I
13@ ?DATREG=6 : END

180@ DEF PROCpulse
1818 ?DATREG=(?DATREG OR 8)
14@2@ ?DATREG=(?DATREG AND 247)
1836 ENDPROC

Now that we have added microswitch sensors to
our robot, we can write software that uses output
through the user port to control the robot, and
input to monitor external activities via the robot's
sensors. The following simple program sends the
robot forwards until an obstacle is encountered,

whereupon the robot retreats to its exact starting
position. The logic of the program can be
described as follows: |

1. Set the data direction register to 15. This sets
bits 0-3 for output and bits 4-7 for input. _

2. Set the motor direction to forwards.
3. Pulse the motors until bit 6 or bit 7 goes low,

keeping a count of the number of pulses made.
4. Set the motor direction to backwards. —
5. Pulse the motors’ ‘count’ times.
6. Set the data register to zero and finish.

In this program we have designated the forward
microswitch pair as the pair furthest away from the
patch sockets on the robot's lid and have
connected these two microswitches to bits 6 and 7,
using two patch cords between the two rightmost
red and blue socket pairs on the lid. In future we
shall always assume that the D plug is further
forward than the patch socket system. If, when you
run this program, you find that your robot appears
to go backwards first (according to this
convention) then simply take off the lid and
replace it the other way round.

_ Of the four low data register bits that control the
motor operation, bit 0 is the rest bit (normally set
to one), bits 2 and 3 are the direction controllers
for the right- and left-hand motors, and bit 3
pulses both motors simultaneously, causing them —
to turn through one step as bit 3 undergoes a low-
to-high transition. Using the logical operators AND
and OR allows individual bits to be turned on and
off without affecting the other bits in the register.
As the upper four bits have been set by the data
direction register to be inputs, they are normally
held high. When a microswitch closes, the
corresponding bit in the data register goes low.
Normally bits 6 and 7 would have the value 192
(128+64) if set for input. The repeating loop that
sends the robot forwards at lines 70-80 is
terminated on the condition that these two bits no
longer have a value of 192. This can happen if
either microswitch is closed (or if both are). If a
count is kept of the number of pulses made to the
motors in the intervening period, then the robot
can accurately retreat to its starting point by
altering the motor direction bits and pulsing the
motors the 3ppropriate number of times. The 7.5°
step of the motors translates to a movement of less
than one millimetre by the wheel — thus we can
control the position of the robot very simply.

Finally, it is interesting to note that the robot
moves forwards more slowly than it does when
retracing its steps. Here we are limited by the speed
of Basic. The time between pulses in the loop that
sends the robot forwards is longer than that for
when the robot is retreating as additional work,
such as keeping the count and testing for the
collision, has to be done in the first loop but not in
the second. |
We now take a short break from the robot

project to allow you to complete assembly of the
‘robot. In the next two instalments we shall be

taking a look at the control of servo motors.

Our introduction to the BBC operating
system concludes with this instalment. We
take a detailed look at the use of vectors,
and investigate how the OS enables us to
interact with the computer via the keyboard
and VD

The majority of BBC OS routines a are peat to be
vectored (see page 878). The OS, on being told to
call the OSCLI routine, first calls a routine at address
&FFF7. This routine then calls the main OSCLI
routine, but not directly. It finds out the address at
which the OSCLI routine is to be found by
inspecting the contents of two bytes of memory in
page 2 of the RAM. These two bytes are called a
vector: the low byte of the address of the routine
concerned is found in the lower numbered byte of
the vector, and the high byte of the address is to be
found in the higher numbered byte of the vector.
Thus, for OSCLI, which is vectored through
locations &208 and &209, the low byte of the OSCLI
addresses is held in location &208 and the high byte
is held in location &209. ‘This is known as the Lo-
Hi addressing convention and is followed for all
stored addresses in all 6502 machines. The
addresses held in each vector are set up by the OS
whenever the machine is reset. Why bother with
such a complicated way of calling a routine in the
OS? It’s not because Acorn are determined to
make the life of a programmer as miserable as
possible. On the contrary, this process is designed
to make life easy! How can this be?

You may have noticed that all BBC OS routines
mentioned so far are called at an address in the
range &FF00 to &FFFF. This is no accident. When
such an address is called, a routine is entered that
causes a jump to the address held in the vector for
that particular OS routine, as we've seen in the case
of the CLI and the OSCLI call. Now, the address that
we call between &FFO0 and &FFFF is the same in all
BBC OS versions and will continue to be in all
versions to come. If it becomes necessary to
change the OS ROM internal programs then the
OS designers simply ensure that the addresses of
the ROM routines that are put in the vector
locations are altered to take the changes into
account. The user is thus protected from such
changes in the OS provided that the OS routines
are called at the correct entry points. The contents
of a vector may therefore differ in different
versions of the OS, but you won't notice this as
long as you use the entry point addresses in the
range &FF00 to &FFFF.
A second advantage of the use of vectors is that

this method provides us with a means of modifying

ACTION STATIONS

the behaviour of the OS routines. We can simply
alter the contents of a vector so that it points to a
machine code routine of our own devising if we so
desire, thus intercepting the normal OS calls. In
later parts of the course, we'll look at the vectors
that are used with each of the major OS routines.

For the moment, let’s consider the vector called
USERV, which is pointed to at locations &200 and
&201. This is a rather special vector, in that it
normally does nothing. It is used by two *
commands, called *CODE and *LINE. If you type
these in normally then the message Bad Command is
issued. Before sending off a letter of complaint
about a new BBC OS bug, read on!

USERV enables us to define the function carried
out by the *CODE and *LINE commands — user —
defined commands, if you like! Why should we
want to do this? Well, *CODEis a particularly useful
way of passing parameters into machine code
programs, as shown in the ee table:

“CODEX,y | “UNEText String

This table shows the state of the three CPU
registers on entering the routine pointed to by the
contents of USERV. A holds either zero or one, and
thus indicates which of the two commands caused
USERV to be entered. X and Y hold values
depending on whether it was a *CODE or a *LINE
command. Thus, *CODE 3, 2 will enter the routine
pointed to by USERV with 0 in A, 3 in X and 2 in Y.
Obviously, the routine pointed to by the address
held in USERV will be the routine that we want to
pass the two parameters to.

The program given on the following page shows
a simple “CODE command in action. The machine
code routine itself is assembled into memory
starting at address &C00 as a result of the
assignment statement in line 40 — the integer
variable P% “maps onto’ the processor program
counter, just as A%, X% and Y% map onto the A, X |
and Y processor registers. USERV is set up to point
to the routine by putting the low byte of this’

: BS, ‘iiday Be?

WIT ie ANY RY

THE HOME COMPUTER ADVANCED COURSE 897

User-Defined Commands

(USERV) —

10 USERV=&288
24 PLUSERV=&a8
25 ?CUSERV+1>=&@C
3@ FOR I¥%=@TQ2STEP2
46 Px=&Ceb

oe EOP): IA

56 - CMP #6

76 BNE natcode

f=) TXA

7a . loop
75 JSR &FFES

166 DEY

119 CPY #6

126 BNE loop
138 RTS

146 »natcode

145 RTS

1S@ J3sNEXT Tx

1466

FOR rep=1 TO 16

216 FOR asc=33 TO 48

224 *CODE asc,rep

296 NEXT :NEXT

address, &00, in location &200, and the high byte,
&0C, in location &201. The routine prints to the
screen a given number of characters; the first
parameter of the *CODE command holds the
ASCII code of the character and the second
parameter is the number of times that the
character is to be printed to the screen.

*LINE isn’t as generally useful as *CODE, but if
you want to use it then the principles shown in the
following program can be applied, as long as you
remember that you will enter your program with
one in the A register and the X and Y registers
pointing to the text string in memory. This is the
main function of *LINE: passing text strings over to
machine code programs. For situations where
there aren't many parameters to pass to your
routine, these two calls are the most elegant way of
doing it.

Line 20 of the program sets up the USERV to
point to our machine code routine. The loop
between line 90 and 120 prints the character
whose ASCII code is in the A register to the screen
Y times. If the routine is entered by a “LINE
command, lines 60 and 70 detect this and quit the
routine. Lines 200 to 250 actually issue the *CODE
command with variable parameters.

USER INTERACTION
The main methods of interaction with a

-microcomputer are via the keyboard and the
VDU, or television screen. Our detailed
investigation of the BBC Micro’s operating system
continues with a discussion of the ways in which
the machine’s OS enables us to interact with these
two vital areas of the computer.

Let’s begin by examining the OS call that
enables us to read characters from the currently
selected input stream. This routine, named
OSRDCH is called at address &FFEO and is vectored
through locations &210 and &211. As it accepts
single characters from the currently selected input
stream, we should first look at how we select the
input stream. There are two major input streams —
the keyboard and the RS423 input. We can select
one of these by means of an OSBYTE, or *FX, call.
The following table shows this command in both
machine code and BASIC.

Thus, *FX21 (-dinaeles the keyboard and enables
_ the RS435 as the current input stream. Data
received on the RS423 input would be treated as if -
it were being typed in to the computer. In
assembler, to do the same job, n would have a
value of one.

Once you've set up the input stream that you
wish to use, you can access it with OSRDCH. The

898 THE HOME COMPUTER ADVANCED COURSE

first thing to say about OSRDCH is that it’s really
only useful in assembler programs — BASIC is
obviously well endowed with input routines such
as GET and INPUT. We call this routine at address
&FFEO, and after return from the call, the character
read in from the input stream is in the A register; if
an error has been detected during the read
operation, then the carry flag is set to one,
otherwise it is reset to zero. Thus, if C=1 on return
from the OSRDCH routine, the character code
contained in the A register is probably invalid in
some way. When we're reading from the keyboard,
this error is often caused by the Escape key being
pressed. This situation is indicated by 0=1 and the A
register holding the value 27 (the ASCII value for
Escape). If you detect this situation, then it is vital
to act upon it; the BBC OS expects such an Escape
error to be acknowledged by the program.
We do this by using an OSBYTE call with A=126.

This cleans up various parts of the BBC OS
workspace in response to the Escape error. The
acknowledgement operation is, of course, usually
done automatically by the Basic interpreter during
an input operation when Escape is pressed. The
simple routine that follows reads the current input
stream and acts accordingly if an Escape error is
detected.

1000 .input JSR &FFEO

1010 BCS error

1020 RTS

1030 .error CMP#2/

1040 BNE out

~ 1050 LDA #126

1060 JSR &FFF4

1070 — .out RTS

‘Line 1000 calls the OSRDCH routine, and 1010
checks the carry flag. Ifit is clear, then an RTS to the
calling program is executed, with a legal character
in the Aregister. Otherwise, line 1030 checks to see
if the error was caused by an Escape event, and, if
it was, lines 1050 and 1060 execute the OSBYTE call
that acknowledges the Escape event. You might
think that in order to enter strings of data into your
machine code programs you have to use a routine
of your own devising, but you don’t. There exists in
the OS a means of reading strings of characters
from the currently selected input stream. This
routine is accessed via one of the OSWORD calls,
which will be covered in more detail later in the
course. However, we'll use this particular OSWORD |
call now to read in strings of characters. |

The OSWORD routines are called at address
&FFF1. There are several of these, and we specify
which we require by the value held in the A register |
when the call.is made. In all OSWORD calls, the X_—
_and Y registers of the 6502 point to a block of
memory called a control block, which holds the
parameters that are to be passed over to the ~
routine. The X register holds the low byte of the -
control block address and the Y register holds the.
high byte of the address — this follows the 6502

_Lo-Hi addressing convention. The way in which

the control block is set up is shown here:

During the inputting of characters by this routine,
the Delete Key has its usual function. The routine
can be exited by pressing the Return or the Escape
key. For example, the control block that follows
has these results when the OSWORD call is made:

1. The first character input will be stored at &C00,
the second at &C01, and so on.
2. Only seven characters will be accepted; if you
try to type in more characters than this then a
‘beep’ will be generated and the additional
characters will be ignored.
3. Only characters with ASCII codes between 32
(the Space character) and 96 (the £ character) will
be accepted; others will be ignored.

As you can see, the call enables us to screen out
unwanted characters in the input. When the
routine is exited, the status of the C flag informs us
what caused the termination of the routine. If C=1,
then Escape has been pressed. If C=0, then Return
terminated the entry of characters and the Y
‘register holds the length of the string entered,
including the carriage return ASCII value added
to the end of the string by the pressing of the
Return key. Remember that you can use this
routine on either of the input streams selected by
*FX2 or its machine code equivalent.

We've now seen how easy it is to read data into
the BBC Micro. Let’s proceed to look at means of
sending characters to the currently selected output
stream. Again, we use an OS call to select the
output stream to be used. This is *FX3,n — where n
specifies the stream to be selected. Each bit of the
nN parameter controls a different output stream.
As an example, *FX3,/ enables the serial, screen
and printer output and allows SPOOLed output,
provided that a *SPOOL command has been issued.

The main routine that is used for sending
characters to the current output stream is named
OSWRCH and is called at address &FFEE, vectored
through locations &20E and &20F. It is very easy to
use; simply load the A register with the ASCII code
of the character that you want to write and then
call the routine. All three following routines print
the character ‘A’ to the screen:

1000 VDU 65.

1000 PRINT CHRS (65)

1000 LDA #65
1010 JSR &FFEE

The Basic VDU command has virtually the same
effects as using OSWRCH. Characters in the ASCII
range 32 to 255 print characters on screen, with
the exception of ASCII code 127, which is the
Delete character. The characters in the range from
0 to 31, however, have special functions, which.
we'll now examine. It is these codes that enable us
to use OSWRCH to draw graphics to the screen,
execute COLOUR and GCOL commands, define
characters, and control the 6845 chip — which
controls the video display of the BBC Micro.

Writing characters to the screen or elsewhere
via the OSWRCH routine is often referred to as
writing to the VDU drivers. The ASCII Control
Codes Table shows the effects of the character
codes between 0 and 31 when they are sent to the
VDU drivers. As you can see, they enable us to do
anything via the OS in our machine code graphics
routines that we can do in BASIC.

GRAPHICS VIA OSWRCH
All the usual graphics commands are available to
us via the OSWRCH routines. Our second example
program, given in the margin, will draw a red line
on the screen. Lines 50 to 75 of the program
execute a GCOL0,1 command, setting the colour of
the line to red. Lines 90 to 150 then execute a PLOT
5100,100 command, which is the same as a DRAW
100,100 command. Line 100 sends the PLOT type (5
in this case) to the VDU drivers, followed by a
two-byte x co-ordinate, low byte first, and then a
two-byte y co-ordinate, low byte first. A MOVE
command can be executed by replacing the 5 with
a 4 (MOVE is simply a PLOT 4,x,y command). Other
graphics operations — such as the PLOT 85
command for drawing triangles — are also
_accessible by these means. One important point to
remember about sending PLOT commands to the

THE HOME COMPUTER ADVANCED COURSE 899

Graphics Via OSWRCH

1@ MODE 1
26
38
46
2G
sib
68
63
76
Figs
88
7a
oS
166
165
114
115
126
125
136
135
148
145
136
146
17@

900 THE

FOR I4=6TO2STEP2
PA=&CO8
COPT. ATA
LDA #18
JSR &FFEE
LDA #@
JSR &FFEE
LDA #1
JOR &EFEE

LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR

RTS
J NEXT 14
CALL &C@e

#25
&FFEE
#5
&FFEE
#4 of
iF rEE
#1@6
eFPEEE
#Q -

wire EE
#104

Free

VDU drivers is that they expect five bytes after the
value 25 is sent as the first byte; if these bytes are
not received, then strange things can happen. This
applies to all VDU driver operations that require
more than one byte to be sent.

VDU23 is another very versatile VDU driver
command. It is used to define user-generated
characters. For example, WDU23,224,255,255,
209,200,200,200,200,200 Will define the character
224 (usually undefined) as a_ solid block.
Characters 224 to 255 in Modes 0 to 6 can be
redefined by the user with this command. Indeed,
using the VDU23 command in conjunction with
one of the OSBYTE calls enables the user to redefine
other characters in the character set. Any
VDU23 calls that are not recognised by the OS —
such as VDU23,0.... — are passed through a
special vector at &226 and &227. By changing the
address contained in this vector, you can add your
own VDU23 command routines. |
A more advanced use for the VDU23 command

is to enable the programmer to access the 6845
video controller chip. VDU23 commands take
the form:

VDU23,0, register, value,0,0,0,0,0,0 —

where register is the 6845 register to which you
want to write, and value is the value to be written to
the 6845. As an example of the use of VDU23 in this
way, the following program alters two of the 6845
registers: they tell the chip which area of the
computer’s memory is to be used as video
memory. The program alters the start of video
RAM to address &0000. This shows the BBC OS
workspace on the screen, and various interesting
effects can be seen. Try adding a few lines of code,
dimensioning some arrays, etc. The routine is
written in BASIC but will easily convert to
assembler: : :

10 MODE 0

20 VDU23,012,0,0,0,0,0,0,0

30 VDU23,0,13,0,0,0,0,0,0,0

40 VDU28,0,10,30,0:REM set up a text window

90 CLS

There are two other OS calls that are related to
OSWRCH. These are: OSNEWL and OSASCII.
OSNEWL, when called at &FFE7, writes a line feed
and a carriage return to the screen. OSASCII, called
at &FFE3, is a variant on OSWRCH, and is useful for
text handling. When a character 13 is written via
this call, a line feed, or character 10, is also written
to the output screen. This should not be used,
therefore, if you are writing graphics commands to
the VDU drivers, since an extra CHRS$(10) might be
generated, thus causing confusion. —

Finally, “SPOOL and *EXEC are two commands
that enable output and input to the currently
selected filing system. *EXEC filename will cause a
file with the appropriate name to be opened, if
present, and its contents read in, as if from the
keyboard. “SPOOL writes characters to the file
named in the command, as if the characters

HOME COMPUTER ADVANCED COURSE

were being written to the output stream.
That concludes our introductory discussion of

the BBC Micro’s operating system. In the next few
instalments we will pause to consider the use of
machine code routines to improve screen output
on the Commodore 64, before returning to our
extensive investigation of a range of operating
systems.

ASCII Control Codes Table

i

On page 892 we began our investigation of
geometnc pattems in Loco by generating
cycloids — the curves traced by circles rolling
on a straight line; this by no means exhausts
the possibilities of the moving circle, however.
Instead of moving along a straight line, the
generating circle could rotate within another
circle, and the path the drawing point traces is
called a hypercycloid.

Much of the problem remains the same —
we still need to move the centre of the
generating circle and then move out to the
drawing point on the circumference. However,
now we need to keep track of two angle steps.
One (HEADSTEP) is for working out the path
of the centre of the generating circle, and the
other (ANGLESTEP) keeps track of the
heading of the drawing point with respect to
the centre of this circle. As the centre of the
smaller circle rotates, the drawing point

_ rotates in the opposite direction. It is possible
to show that the sizes of the two ae are

related by the formula:

ANGLESTEP = HEADSTEP x
- (RADIUSI / RADIUS2 — 1)

where RADIUS] is the radius of the fixed
circle, and RADIUS2 that of the rotating one.
The procedure HYPERCYCLOID takes
RADIUS2 as an input, thus allowing us to trace

* out a number of different hypercycloids.
-TOHYPERCYCLOID RADIUS |

-_ - SBESCREEN -~- 7 :
GX MAKE CPL Oda! aise
_ MAKE“RADIUS1 60 | |

MAKE Sg RADIUS] ei
‘RADIUS2 we ee
MAKE “HBADSTEP 6G: -. >
MAKE “CIRCUMFERENCE 2 * :PI *
‘DIFFERENCE
MAKE “STEP :;CIRCUMFERENCE / (360
/ HEADSTEP) :
MAKE “ANGLESTEP HEADSTEP *(
RADIUS] 7 sRADIN Se 12)
MAKE"CENTRE LIST 0 :DIFFERENCE
MAKE “HEAD 0
MAKE "X CENTO —
MAKE “OLDPOS LIST :XCENT :RADIUS1
HCYC 0

END

TOHCYC;ANG: .
MOVECENTRE2
SETPOS POS
SETH :ANG
FORWARD :RADIUS2
MAKE “NEWPOS POS
JOIN :OLDPOS :NEWPOS
MAKE “OLDPOS :NEWPOS
HCYC.:ANG — ‘ANGLESTEP

END

TO MOVECENTRE2
SETXY 00
SETH ‘HEAD

avi veseresT COCO POCTR Riesewsncenaacl

FORWARD :DIFFERENCE
MAKE “CENTRE POS 7
MAKE “HEAD :HEAD + :HEADSTEP

END 7

There is an interesting special case: if the
radius of the rolling circle is one half that of
the fixed circle then the hypercycloid
becomes a straight line! In this way, motion

“within: a -circle is transformed into motion

along a straight line. You might like to modify
the procedures to find out what happens if the
point is inside the circle, or outside the circle.

‘Curve stitching’ is another way of
developing some interesting shapes from
circles. Take two concentric circles and mark

each of them out into a large number of equal
arcs — say 120. Number the points, and then
join them, one at a time, to points on the other
circle according to some simple rule — for
example, x maps onto’ 2x. The results can be
very surprising.

This activity can ac be done with
needle and thread, so it's often called curve

stitching. It can also be done with pen and
paper, but obviously we would prefer you to
use Loco. Here is our version of a CoS: |
stitching program:

TO SETUP —
MAKE “RADIUSA 80
‘MAKE “RADIUSB 60
DRAW.
HT

- PENUP
- DRAWITOO
END: 7, oe JF

-TODRAWIT:A:B.
IF :A = 120 THEN STOP
JOIN PTA :A PTB :B
MAKE “A:A+ 1
MAKE “B2*:A
DRAWIT:A:B

END

TO PTA :NO
SETXY 00
SELn NOS
FORWARD :RADIUSA
OUTPUT a

END

TO PTB :NO
SETXY 00
SETH :NO * 3
FORWARD :RADIUSB
OUTPUT POS

END

You may like to investigate the pattems
generated by other rules, such as x > 3x, x >
4x, etc.

